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POSSIBLE CHANGES IN THE TANKPOSSIBLE CHANGES IN THE TANK 
CLOSURE SYSTEM AT LONG TERM
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Air void (partially water filled?)
carbonation frontcarbonation frontcarbonation front oxidation frontoxidation front



Effect of Boundary Conditions Boundary ConditionsEffect of Boundary Conditions 
and Saturation on Release from 
a 3-layer System

3-Layer 1-D diffusion model for

Waste form – no flux at interior boundary (left side)
Clay soil – zero concentration at external boundary 
(right side of clay soil)

Initial Condition3 Layer, 1 D diffusion model for 
non-interacting, conservative 
species (e.g., Na)

Waste Form Concrete Clay Soil

Initial Condition
Na only in waste form at time zero at C/C0=1

Cases
1. Saturated

(1) (2) (3)

100 cm 20 cm 50 cm

2. Unsaturated (tortuosity values assumed 2x for both 
waste form and concrete and 3.2x for soil; available 
porosity assumed 0.8x for waste form and concrete 
and 0.16 x for soil)

Waste 
Form Concrete

Clay Soil
(compacted)

Density 
(g/cm3) 1.7 2.4 1.8

and 0.16 x for soil) 

3. Same as (1) but with concrete layer only and 
C/C0=1 at waste form-concrete interface and C/C0=0 
at concrete-clay soil interface

(g/cm3)

Porosity 0.4 0.1 0.35

Tortuosity 
(sat’d) 5 15 2

4. Same as (1) but with waste form only and C/C0=0 
at waste form boundary (waste form in infinite bath) 
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Transport of non interacting species in 1 2 and 3 layer system (sat unsat)Transport of non-interacting species in 1-, 2-, and 3-layer system (sat – unsat)
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Flux of non interacting species at the cement soil interfaceFlux of non-interacting species at the cement-soil interface
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Scaling to smaller dimensions with same physical conditionsScaling to smaller dimensions with same physical conditions
Na+ release from a waste through a cementitious 

barrier into a clayey soil
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Steady state condition established within 2 years



K l f t th h titi b iK+ release from a waste through a cementitious barrier 
into a clayey soil
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In spite of higher K level in barrier steady state condition established within 2 years



Illustration of the importance of more 
detailed chemistrydetailed chemistry

Geochemical speciation modeling based on pH dependence test 
results taking mineral precipitation, clay interaction, sorption on g p p y p
ironoxides, incorporation in ettringite and interaction with 
particulate and dissolved organic matter into account.

Sorption parameters for particulate and dissolved organic matter 
for U and Th based on the generic parameters derived by Milne 
t l 2003 f th Ni D d let al, 2003 for the Nica Donnan model. 
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Standardisation:

Characterisation leaching tests

GRANULAR MATERIALS

or pH DEPENDENCE 
TEST BATCH MODE

Standardisation: 
CEN/TC292, ISO/TC190, 
CEN/TC345, CEN/TC351, 
SW846

PERCOLATION 
LEACHING TEST 
CEN TS 14405 or 
EPA method 1314

TEST: BATCH MODE 
ANC, CEN/TS 14429, 
or EPA method 1313
or, COMPUTER 
CONTROLLED CEN/TS 

MONOLITHIC  MATERIALS

CO O C / S
14997

TANK LEACH TEST 
MONOLITH CEN/TS 

15863 and EPA method 
1315 and COMPACTED 

GRANULAR LEACH TEST

Same as granular      
+ GRANULAR LEACH TEST 

(NEN 7347 and EPA 
method 1313).

Chemical speciation aspects Time dependent aspects of release

+
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Chemical speciation aspects Time dependent aspects of release



LeachXS StructureLeachXS Structure

In the modeling mineral dissolution, sorption on hydrated ironoxides, clay interaction, interaction 
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g , p y , y ,
with particulate and dissolved organic matter and incorporation in ettringite solid solution.



Cement Stabilised Waste Mix

[Th+4] as function of pH Partitioning liquid-solid, [Th+4] Th+4 fractionation in solution Th+4 fractionation in the solid phase
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Information also relevant for stabilisation of contaminated soil



Granulated blast furnace slag – fly ash cement mortar

[Th+4] as function of pH Partitioning liquid-solid [Th+4] Th+4 fractionation in solution Th+4 fractionation in the solid phase[Th+4] as function of pH
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Cement mortars and concrete not inorganic: non-negligible organic matter content! 



CLAYEY SOIL

[Th+4] as function of pH Partitioning liquid-solid [Th+4] Th+4 fractionation in solution Th+4 fractionation in the solid phase[Th+4] as function of pH
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Soil system dominated by dissolved and particulate organic matter interaction



PROFILE WASTE- CEMENTITIOUS BARRIER - SOIL

I t ifi ti
Diffusion Case Stabilised Waste  - CEM II GBFS-FA - Soil OXIDISED/ CARBONATED
Layer overview

Material Stabilised waste GBFS-FA-Mortar Soil
Length 5 00 2 00 5 00 cm

Input specification

Length 5.00 2.00 5.00 cm
Porosity frc 0.40 0.10 0.35
Tortuosity 3.00 10.00 2.00
Density 1.70 2.40 1.70 kg/dm³

H 10 1 11 5 6 5pH 10.1 11.5 6.5

pe 15 15 15

In the modeling mineral dissolution, sorption on hydrated 
ironoxides, clay interaction, interaction with particulate and 
dissolved organic matter and incorporation in ettringite solid 
solutionsolution.

Typically 44100 variables, 192565 expressions, 118 equations
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PROFILE WASTE- CEMENTITIOUS BARRIER - SOIL

Distribution profile for Al+3 after 6 days Distribution profile for Ca+2 after 6 daysp y
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depth (m)

Free DOC-bound POM-bound FeOxide Clay Ettringite BaSrSO4[50%Ba] Strontianite
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PROFILE WASTE- CEMENTITIOUS BARRIER - SOIL

Distribution profile for Th+4 after 6 days
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Predominance diagrams 

Projected 
very long 
t

Technetium

term 
condition –
carbonated 
and a d
oxidised

Initial 
condition –
alkaline and 
reducing
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Carbonation leads to alterations in the releaseCarbonation leads to alterations in the release 
behaviour as a result of the pH change that is brought 
about

CarbonationCarbonation
The effect of carbonation on 
release is illustrated by 

CO2CO2CO2

modeling, including an 
evaluation of uncertainty in 
the model prediction. 

CO2CO2CO2
The data are placed in 
perspective to actually 
measured test data for  > 70 

carbonation frontcarbonation frontcarbonation front different cement mortars 
(Portland as well as different 
types of blended cements)
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Stochastically varied input parameters for modeling of 
pH dependence leaching test data for cement mortars 

• Total available concentration (10%)

• pH (0.1 unit)p ( )

• Pe (2 units)

• All reaction constants (15%)

• Ionic strength (20%)

• Gaussian distribution

• 2000 simulations in the pH range 2-13
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Solubility of Ca in cement mortars as function of pH
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Solubility of SO4 as S in cement mortars as function of pH

Without Carbonate With Carbonate
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Solubility of Si in cement mortars as function of pH

Without Carbonate With Carbonate
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CONCLUSIONSCONCLUSIONS
- Both physical and chemical changes in the waste form and cement 
barrier are of importance to properly assess release to thebarrier are of importance to properly assess release to the 
environmental. 

- For non-reacting species a steady state condition of release through 
the barrier develops within a few years for saturated conditions Forthe barrier develops within a few years for saturated conditions. For 
unsaturated conditions this takes in the order of a hundred years.

- Carbonation and oxidation lead to important changes in release 
b h i f b A h l d i f i ibehaviour of substances. As these processes lead to moving fronts it is 
difficult to capture the release in a Kd describing contaminant 
behaviour of the entire waste form, the barrier or the soil. 
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CONCLUSIONSCONCLUSIONS
- Gaining insight in more detailed chemical interactions is of 
importance as mobilisation in the form of dissolved complexes mayimportance as mobilisation in the form of dissolved complexes may 
occur. Currently, organic matter interaction is not considered. 

- The binding potential of hydrated ironoxide (formed in situ upon 
oxidation of reduced Fe in both waste and barrier) for radionuclides ofoxidation of reduced Fe in both waste and barrier) for radionuclides of 
interest is important for retention within the containment under 
oxidised/carbonated conditions. 

U d Th i h d l li i d d f h- U and Th in the present model runs are preliminary and need further 
verification by measurement of actual release behaviour from size 
reduced stabilised waste. In case of U and Th, this is possible with 
stable isotopes For Tc this is obviously not possiblestable isotopes. For Tc this is obviously not possible. 

- Therefore, carrying out a pH dependence test on cement stabilised 
radioactive waste is highly recommended to provide better insight in 
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CONCLUSIONSCONCLUSIONS
- More detailed chemical characterization provides the means to 
design for retention of contaminants in the waste or the design of adesign for retention of contaminants in the waste or the design of a 
chemical barrier in addition to physical containment.

- Although calculation times with complex chemistry are long compared 
to Kd type calculations it is possible to model release under definedto Kd type calculations, it is possible to model release under defined 
conditions along the projected path as defined in a pe – pH diagram 
(resulting from carbonation and oxidation).  More complete 
consideration of chemical processes also provides more robustconsideration of chemical processes also provides more robust 
understanding of non-linear process coupling and for improved design.

- Optimization of calculation efficiency. Balance complex models with 
simplified models Preferably justified simplification based onsimplified models. Preferably justified simplification based on 
understanding the underlying processes. 
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